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b in vertex set B form an interval of A ; C is doubly convex if it is

convex on both A and B. For these types of graphs Clover discovered a

simple rule for finding maximum matchings. Letting IA I  = in and IBI =

J in this paper we describe an implementation of Glover ’s rule which runs

in time O(rn+nloglogn) on a convex graph, and in time O(m+n) on a doubly

convex graph. We also show that, given a maximum matching in a convex

bipartite graph C, a corresponding maximum set of independent vertices

can be found in time 0(m+n). Finally, we br iefly discuss some generali-

zations of convex bipartite graphs and some extensions of the previously

discussed techniques to instances in scheduling theory.
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EFFIC IENT ALGORITHMS FOR FIND ING MAXIMUM MATCHING S IN

CONVEX B IPARTITE GRA PHS AND RELATED PR OBLEMS

W. Lipski , Jr. and F. P. Preparata

1. Introduction

Matching problems constitute a traditionally important topic in

combinatorics and operations research [8 ] and have been the object of
extensive investigation. Particularly interesting is the problem of finding

a maximum matching in a bipartite graph, which is stated as follows: Let

C — (A ,B,E) be an undirected bipartite graph, where A and B are sets of

vertices , and E is a set of edges of the form (a ,b) with a E A and b E B.

A subset M C E is a matching if no two edges in M are inc ident to the same

vertex; M is of maximum cardinality (or simply, maximum) if it contains the

maximum number of edges. As noted by Hopcroft and Karp [7], this problem has

many appl ications, such as the chain decomposition of a partially ordered

set, the determination of coset representatives in groups, etc. Hopcroft and

Karp have also developed the best known algorithm for this problem.

A special instance of the problem, with some industrial applications,

was originally discussed by Glover [ 6] and referred to as matching in a
convex bipartite graph. A bipartite graph G is convex on A if an ordering

“�“ of the elements of A can be found so that for any b E B and distinct

a1 and 82 in A (with a1 � 82)

(a 1,b) E E and (a2,b) E E ~ (a ,b) E E for any a € A such that 8
1 

a < 8
2

1~
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In other words , G is convex on A when there is an ordering on A such that

for any b € B the set of vertices of A connected to b forms an interval in

this ordering. In such a bipartate graph we let BEG[b] and END[bJ denote

the “smallest” and “largest” elements in the interval of the elements

of A connected to b. Naturally , if b E B is isolated , the set A(b) is empty

and BEGEb) — END[b] — A , the empty symbol. In what follows we assume that

there is no isolated vertex in B.

When this proper ty holds , the maximum matching problem is considerably

easier to solve. In fact Glover proved that the following simple procedure

yields a maximum cardinality matching (we assume that both A and B be given

as sequences of integers from I to IA I and IBI respectively; MATCH[iJ denotes

the element of B matched to i E A):

Algorithm 0

1 begin for I: — 1 to [A! do
2 begin U: — [k:(i,k) € E and k has not been deleted from B)
3 j~ U # ~ then (* find .1 € U to be matched to i *)
4 begin j: — element in U with minimum value of END
5 MATCH[iJ: j
6 Delete 3 from B

8 else MATCH[ i] : — A  (* I unmatched *)
9

10 end

In words , element I of A is matched to an available element 3 of B whose

corresponding interval ends the closest to i. The most time consuming task

of this algorithm is the formation of the set U and the associated deterinina-

tion of an element 3 E U with the smallest value of END[j]: for any given p
i E A , it involves scanning all, the elements of B connected to I. Thus the
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running time of this task is clearly O(IEI), as pointed out by Lawler [8].

In this paper we shall descr ibe a cons iderably more eff icient

implementation of Clover’s rule and investigate both specializations and

I 
- generalizations of the original matching problem. Specifically . after

considering (Section 2) the maximum matching problem in a convex bipartite

graph, we shall analyze the further simplif ications which are poss ible

when the graph is doubly convex (Section 3), and the optimal time

- determination of the maximum set of independent vertices associated with a

1 given m aximum matching (Section 4). Finally (Section 5), we succinctly

describe two generalizations of the convex matching problem and an extension

of the techniques to weighted matching, which directly applies to the

solution of a scheduling problem.

I

F

1~

I~~~.
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2. Maximum matching in convex bipartite graphs: an efficient implementation

of Clover ’s rule.

Let G = (A ,B,E) be a bipartite graph convex on A , with IA I = in and

= n. As before, A = Cl ,2 ,. . . ,mJ and B — [1,2 , . . .  ,n). For b E B,

A(b)  ~ A denotes the set fa:(a,b) E E3; similarly , for a € A , B(a)  C B

denotes the set [b:(a ,b) E E3. Again, we assume that A is ordered so that ,

for each b E B, A(b) is the interval [BEGEb], END[b]]. Notice that if the

set A is not initially ordered so that the property of convexity is manifest,

the bipartite graph G can be tested for possession of this property - and ,

if so, rearranged - in time O(IEI+m+n) by means of the Booth-Lueker algorithm

[2].

We begin by giving a generalization (and simpler proof) of Glover ’s rule.

Lemma 1. If (a,b) € E and A(b) c A(c), for any c E B(a), then there is a

maximum matching containing (a,b).

Proof. Suppose M is a maximum matching not containing (a ,b). If a is

unmatched then we may replace the edge of the matching incident to b with

(a ,b ) ,  similarly if b is unmatched . Suppose therefore that (a,c), (d,b) E M

for some c E B, d E A. Since d E A(b) C A(c), it follows that (d,c) E E,

and we may replace (a ,c) ,(d ,b) by (a ,b ) , ( d ,c) (see Figure 1).

~~~~~~~~ 

0

Figure 1. To the proof of Lemma 1. Wiggly edges belon g to the matching .
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In order to prove that Algorithm 0 correctly finds a maximum matching ,

let us denote by G the graph obtained from G by deleting l,...,i-l from A

and MATCH[l],...,MATCH[i-l] from B, together with the edges incident to all

these vertices. Let M~ be the set of edges matched by Algorithm 0 to

vertices 1,... ,i in A (we put M
0 ~ ~), and let A~ (b) and B

1
(a) be def ined

for G~, in the same way as A(b) and B(a) were defined for C. We say that M~

can be extended to a maximum matching of G if there is a maximum matching

M of C containing M~; this means that M is the union of M~ and of a maximum

match ing of Gj+i.

Assume inductively that a � m and that Ma,,l can be extended to a

maximum matching of C. (This is trivially true for a=l, since M0 
is empty

and C
0 
coincides with G.) We shall prove that M

a 
can also be extended to

a maximum matching of G. This is obviously true if B (a) = ~, so assume

that B
a(a) ~ ~, whence Algorithm 0 chooses MATCH[a] — b ~ A. It is then

sufficient to show that there is a maximum matching of G
a 
containing

(a ,b). But this is immediate, since for any c in 8
8(a) we have

A8
(c) — [a ,END[c]]; by line 4 of Algorithm 0, we have END[bJ � END[c] for

any c ~ b in Bg(a) ,  whence A (b) c A
a

(c), and , by Lemma 1, the claim is

established .

As noted earlier, efficiency can be achieved if for a given a € A

the computation of j E B
8(a) 

for which END [j] is minimum can be sped-up .

We shall now show that, by some additional preprocessing and the use of

appropriate data structures, this can be done in time which is sublogarithmic

F in the size of B ,

H -  
- - 

.T
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The basic idea is to try to store the set B~ (i) of unmatched vertices

of B connected to a currently inspected vertex i E A on a priority queue,

so that the element j E B to be matched to i can be found as the least element

of the queue. This is indeed possible if the elements of B are relabelled

so that END[1] � ... � END[n] . Then the least element of the priority

queue minimizes the value of END , as required by Clover ’ s rule . In order

to complete the description of our implementation , we should specify a

method of updating the priority queue , so that its content is changed from

Bi(i) to Bi+1(i+l) as I is increased by one. It is easy to see that we

should delete the least element from the queue (the vertex to be matched

to I) ,  then delete all vertices k E B with ENDrkJ = i and finally insert all

vertices k E B with BEG[k] = 1+1. Deleting vertices is easy, since the set

of vertices k E B with END[k] = i appears as an interval in our ordering of

B. Inserting vertices can be made easy too, if we precompute an array

ORDBEC[l:n] containing the vertices of B sorted according to the

parameter BEG , so that BEG[ ORDBEG[ 1J ] � ... � BEC[ORDBEG [n]] ; then the set

of vertices k E B with BEC[k] — i is stored in an interval of consecutive

positions of ONDBEG. Notice that both relabelling of vertices in B so

that END[l] � ... < END[n] and compucing the array ORDBEG can be done in

time 0(m+n) by standard bucket sorting (see e.g. [1 ]), since in both cases
there are n items to be sorted by a key which may assume values from

integers 1,... ,m.

I

I



Next we may take advantage f the fact that the elements in the

prior i ty  queue are integers in the range [l ,n] and employ the pr ior i ty

queue structure developed by van Emde Boas [3 , 4], which allows each of the
L.

standard queue operations to be performed in time O(loglogn) and uses

space 0(n).

We can now formally describe the matching algorithm , where:

QUEUE denotes the just mentioned priority queue ~ la van Etnde Boas (with

associated operations MIN , DELETE , INSERT , EXTRACTMIN); MATCH[l:m]

ORDBEC[l:n], BEC[i:n], and END[l:n] are arrays of integers , the integer

variables nb and ne are counters referring to the arrays ORDBEG and END ,

respectively (nb-i and ne-i count respectively the number of beginnings

and ends of intervals [BEG[k] ,END[ k] ]  found so fa r .

Algorithm 1 (Finding maximum matching in convex bipartite graph)

Input: BEG [l:n] , END[l:n], OEDBEG [i:nJ

ENDI1] � ... ~ END[n], BEG[ OEDBEG[ 1]J � ... � BEG[ORDBEG[n]J
Output: MATCH[l:m]

(Algorithm on next page)
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1 begin QUEUE: =0 , nb: ne: = 1
2 for i: = 1 to m do
3 begin (*fjnd vertex to be matched to j *)
4 while (nb � n) and (BZG[ ORDBEC[nbJ ] = i) do
5 begin INSERT (ORDBEG [ nb] )
6 nb: n b + l
7
8 if QUEUE = 0 then MATCH[i]: A (*1 unmatched*)
9 else begjn MA TCH[ i] : = MIN

10 EXTRACTMIN
11
12 while (ne � n) and (END[ne] = i) do
13 begin DELETE (ne)
14 ne: = ne+l
15 end
16
17 end

From the viewpoint of performance , notice that each term of MATCR[1:ra]

is processed exactly once (lines 8 or 9 ) ,  for a total work 0(m) ,  while each

term of B is inserted into the queue once (line 5) and extracted once

(lines 10 or 13). So we conclude that the running time of Algorithm 1 is

O(m + nloglogn).
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3. Maximum matching in d oub ly convex bipartite graphs

As noted by Clover , the maximum matching problem becomes even simpler

when the bipartite graph C is doubly convex, i.e., order ings of both A and B

exist such that every A(b) is an interval of A and every B(a) is an interval

of B.

As before , we assume that G be given as a bipartite graph convex on A ,

that is, as a set [< BEG[b] ,END[b] > :b  E B) representing intervals of A.

A preliminary task is to test whether the set B can be reordered so that

for each a E A the set B(a) be an interval of B.

Pictorially, we may d isplay C by means of a set of segments (Figure 2a):

I) specifically , in the plane (x,y) ,  we let the segment y b, BEGEb] � x � END[b]

represent the interval A(b) (in the sequel this will be briefly referred

to as segment b). If we next join the extremes of adjacent segments, i.e.,

introduce in this diagram edges (BEG[i] ,BEG[ i+i]) and (END[i] ,END[i+l]),

for i = l ,2,...,n-l, the set of segments is enveloped by two polygonal

lines called the left and right boundaries, which together with the first

and last segments of the given set form a simple polygon. In this

representation, C is convex on B if the intercept of a vertical line with

this polygon cons ists of a single segme nt : thus C is convex on B if and

only if the segments can be rearranged so that both boundaries are bitomnic,

as shown in Figure 2d (that is, in the resulting relabelling of elements

of B, for some 1 ~ r1 � n, BEGC 1] � ... ~ BEG[r 1] and BEG[r 1] 
< ... � BEG[nJ ;

similarly for some l� r2 � n , END[1] � ... � END[r2] and
END[r2] 

� ... � END[n]). We shall now describe a linear time - hence

optimal - algorithm which tests C for double convexity and , if this property

holds , produces the desired ordering of B.
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Figure 2. Different polygons corresponding to the same set of segments.
(a) arbitrary order ; ( b ) , ( c )  ordered by nonincreasing BEG;
(d) ordered to exhibit double convexity.

In the rest of this section we shall always assume that the convex

bipartite graph C under consideration is connected. In fact, it is very

easy to find connected components of a convex bipartite graph. Ct is

sufficient to scan vertices i € A in increasing order and to count the

number of beginnings and the number of endings of intervals found up to

vertex i. Each time these two counts coincide, a new connected component

is found. With the elements of B labelled so that END[l] � ... � E!W[n],
and with the array ORDBEG as in Algorithm 1, the determination of connected

components can be done in O(m+n) time.

•1
- - - - _______________________________ I
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Referring to Figure 2d, it is easy to see that the polygon displaying

the double convexity of an arbitrary G consists - up to the reversal of the

ordering of B - of three regions (not all simultaneous ly emp ty) :  a middle

region, where both left and right boundaries are nondecreasing (i.e.,

both BEG[JJ and END[j] are nondecreasing with increasing 3, assuming that
the labelling of elements of B coincides with the bottom to top ordering of

segments in the given geometric representation); a .~~2. 
region where the left

and right boundaries are nondecreasing and nonincreasing , respectively ; a

bottom region where the left and right boundaries are nonincreasing and

nondecrea sing, respectively. Moreover, all segments of the top region are

nested , starting with the topmost segment of the middle region, similarly,

all segments of the bo ttom reg ion are nested , starting with the bottommost

segment of the middle region.

It is easy to see that our description need not define the three regions

uniquely , if there are different elements in B with the same value of BEG

or END; to guarantee the uniqueness we require that all segments in the

bottom region have BEG [J] > mm 1 � k < BEG[k] , and all segments in the

top region have END[j] < max1 < k � n~~~~
1(j

Suppose that we initially index the elements of B so that the pairs

<BE’Tj],END[jJ>, 3 — l,...,n are in lexiographic ascending order; this can

be done by bucket sorting these elements on the parameter BEG, and then

(stably) bucket sorting the resulting sequence on the parameter END, all in

time 0(m+n). Once this ordering of segments [A(b):b E B) is available
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(see Figure 2b), we shall first extract from it the subsequence of segments

to be assigned to the midd le region. To complete the test, we must verify

whether the remaining segments can be successfully assigned to either top

or the bottom regions. Since for segments in these regions, the orderings

BEG and END are contragrad ient, we mus t preliminarily alter the order of the

segments not assigned to the middle region, so that for any two such

consecutive segments j and j+1,(BEG[j] — BEG[j+l]) ~ (END[j] � END[j+1]):

this can be obviously done in linear time by a straightforward use of a

stack (Figure 2c). Next, we must test whether the resulting sequence can be

partitioned into 
~~2. 

subsequences , for each of which the parameter END is

nonincreasing : if this is feasible , then the two subsequences of segments

will respectively form the top and bottom regions. More exactly, we should

do the partitioning in such a way, that the resulting subsequences of

segments be nested as previously explained . We guarantee this by assigning

the extremal segments of the middle region to the sequence to be partitioned .

The whole task is performed by the following algorithm , which computes

for each segment j a parameter Yfi] denoting its order in the final

arrangement. This algorithm also makes use of a special subroutine , which -

if at all possible - partitions in linear time a sequence of integers into

two nonincreasing subsequences; for example , (4,6,3,5,4) is partitioned

into (4,3) and (6 ,5,4). This simple subroutine is described formally in an

append ix. Its additional feature, which is important for the correctness

of our algorithm, is that the first term of the sequence is assigned to

the first subsequence.
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Algorithm 2 (Testing for double convexity of a connected convex

bipartite graph)

Input: sECrl:n],END[l:n]

The pairs <BEG[j],END[j]>, 3 — 1, . . .  ,n are in lexicograph ic

increasing order ing

Output: Y[l:n]

Vertices 3 € B relabelled so that for 1 � 3 < n

BEG[J] < BEG[j+l], or BEG[JJ — BEC[j+l] and END[j] � END[j+l]

I begin (* find last segment 3m of middle region *)
2 jm : 1
3 forj: — 2 t o n do
4 j~ END [JF� E~~~jm] ____ 3m: — .1

(* extract segments not in internal part of middle region *)
5 e: E~~ [l], L :  — O
6 for j :— 1 t o n~~~
7 j~ (ENDCT3T � e) ,~~~~~~~ ( j# l) ~~~ (j#jm) then e: — END[j]
8 else b e g in L :  — L + l
9 S[ L] : — j

10
11 relabel the elements of B so that for 1 � 3 < n

(BEG[j] — BEG[j+l] ) ~ (END[j] � END[j+lJ)
12 reorder sri:,J so that for 1 � p < L

(BEGfS[ pJ] — BEC[S[p+ 13]) (END[S[p]] � END[S[p+l]])
13 partition S[l:L] into two subsequences SUB1I1:Ll] and

SUB2[1:L2], such that ENDISUB1[1]] � ... ~~ ENDCSUBI[L1]]
and ENDISUB2[l]] � ... � END[SUB2[L2)]

14 kl: — k2: — k3: — 115 for 3 :  — 1. to n do (* determine y [J] *)
16 if SUB1[kl] —j then (* 3 belongs to bottom region *)
17 begin Y[j]: a £1 - kl + 1
18 ki: ki + 1
19
20 else if SUB2[ k2] — 3 then (* 3 be longs to top region *)
21 begin Y[jJ : — n -

22 k2 : k2+l
23
24 else (* 3 belongs to middle region *)
25 begin Y[j] : — L2+k3
26 k3: — k3+1H
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It is straightforward to conclude that Algorithm 2 runs in time 0(n).

We can now describe the maximum matching algorithm, which makes use

of a DEQUE (doubly-ended-queue) as an auxiliary data structure; as is well-

known, DEQUE has two distinguished elements , top and bottom , and the

following reper toire of instructions : INSERTTOP, DELETE TOP, INSERTBOTTC!4,

and DELETEB~TTcM.

Algorithm 3 (Finding maximum matching in doubly convex bipartite graph)

Input: BEG[l:n], END[l:nJ , Y[l:n]

BEGLI] < BEG[ j +l] , or BEG[JJ — BEG[j+1] and ENDCJ] � END[j+l]

for 1 � 3 < n

Output: MATCH[l:m]

I begin DEQUE : — 0, 3: a 1
2 for i: — l t o m do
3 begin (* find element in B to be matched to i E A *)
4 while (BEGEJ] — i) 

~~ (3 � n) do
5 begin (* insert 3 into deque *)
6 if (DEQUE — 0) or (Y[j] > Y[top]) then INSERTTOP(J)

~iae INSERTBOTT~ 4( 3)
8 3: — 3+1
9 end

10 if (DEQUE 0) then M~TCH[i]: — A (* i unmatched *)
11 else ~~ ENDItop] < END[bottom] then
12 begin MATCH[ i] : = top
13 DELETETOP
14
15 else ~~~~~ MA TC}( i]: bottom
16 DELETEBOTTOM
17
18 while (DEQUE ~ ~) and (ENDt top) — i) do DELETETOP
19 while (DEQUE 4 

~) and (ENDibottom] — i) do DELETEBOTT OM
20
21 end

I
I
1

i41
.-
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Notice that each element of B is inserted into and deleted from the

DEQUE exactly once , and that each of the standard deque operations can be

executed in constant time; it follows that the entire matching can be

computed in time O(m+n).

I
F
1~

I i

I

I
I —
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4. Finding a maximum independent set of vertices in a convex b ipar t i te  grpi,h

Closely related to the maximum matching problem in bipartite graphs

is the determination of a maximum independent set (of vertices), that is,

of a maximum cardinality set of vertices of the bipartite graph C such that

no two of them are connected . It is well-known (see, e.g. [10]) that a

maximum independent set can be derived from a maximum matching M by

standard alternating path techniques as follows (see Figure 4): (i) direct

every edge e E M from A to B, and any e € E-M from B to A; (ii) letting B
0

denote the set of unmatched vertices in B, find the sets A
1 
C A and

81 
(B
~ 

C B
~ 

C B) of vertices reachab le from B
0; (iii) construct the maximum

independent set as I ~ B1 U 
(A-A 1). Therefore the entire problem reduces

I ’

I ~~~~~ j—.
~~
/ /~ 

_..
I ~1 ~~~~~~~~~~~~~~~~ ~~ f ‘_

~~i c-’ 7~~ —1-- 2
‘ ‘~~~~~~ v i’ r~(_ .=-~~,~-~~‘ / i~~~ I

‘~ I f r ) 
I

B
/

B
0

Figure 3. Illustration of the derivation of a maximum independent set from
a maximum matching (wiggl y edges are in the matching M ) :  vertices
in the independent set shown as I
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to f inding all the vertices of C which are reachable from B
0
. A most

interes ting fac t we shall now show is tha t, when C is convex, this reachab le

set can be obtained in time O(n4m) so that the determination of a maximum

independent set runs in total time O(m4-nloglogn), or 0(m-fn) if G is

doubly convex, the computation of the maximum matching being the dominant

task (notice that, once A 1 and B1 are known, I is obtainable in time

I
As usual , the graph G is described by the two arrays BEC[l:rt] and

END[l:n]; M~TCH[l:n] gives for each i E A either A or the element of B

matched to it. We assume that the elements of B be ordered so that

BECLi] � BEG[i+l], l� i < n. Due to the property of convexity, for each

b € B0 the set A(b) of vertices reachable by a single edge from it form an

interval of A; from arty matched vertex a in this interval we reach a single

vertex MATCHLa] E B, which in turn reaches another interval A (MATCH[a]) of

A. Notice thar A (b) and A (MATCH[a]) necessarily overlap, so by the

convexity of C their union is a single interval. Therefore, initially we

place in a queue all the elements of B..~ in increasing order, and starting with

the smallest one j
~ , 

we determine a single extended interval A*(j1) ~~A(j1)

of A , which is the set of all elements of A which are reachable from

(A*(j1) could be informally viewed as the “closure ” of A(j
1)). This

extended interval is constructed by scanning A( j
1) in 

decreasing order

starting from END[j
1] and currently up

da ting the ex tremes of the reached

interval; once the scann ing reaches the lower extreme without further

downward extension of the interval, then if the interval has been extended

upward beyond END[31], 
scanning is resumed in ascending order starting from
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END[J
1] 

until the same terminating condition occurs, and this process

is repeated until no further extension - either downward or upward - is
possible. At this point the construction of interval A*(j

1
) has been

completed . We then extract the next element from the queue and begin

the construction of A*(j2). Notice that if A*(j
1

) and A( j
2
) are disjoint

(F igure 4a),  BEG[32] must be larger than the upper extreme of A*(j1) .  Since

by hypothesis , BEG[31] � BEGIJ 2], it follows that only downward extensions

0
0

cannot lower 
__________________

A*(j ) ,,
.— cross update

~~rr1 

{A ~ 
~~~~~~~~~~~~~~~ i~ 

lower

A(i2
){
~~~~~~~~ .

J7~
”32

(a ) (b)

Figure 4. (a) Illustration of the case where A*(j1) and A(j2) are disjoint.

(b) Explanation of the meaning of variables “lower”, “upper ”,
L and u.

I
I
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of A (j2
) may meet previously scanned e lements of A.  To avoid any time-

consuming unnecessary repeated scanning , we must ensure than any previously

scanned interval be skipped in subsequent processing , so that each element

of A be scanned at most once . This objective is achieved by means of a

stack: as soon as the construction of A*(j), for some 3 E B0, is completed ,

its lower and upper extremes are irtserted into the stack, whose content -

at a generic instant - is a sequence -l ,i1, e1, i2 , e2 , . . .  , ik, ek, such that ,
k

for 1< p < k , e~ + 1 < i~~1, Ei ,e] is an interval of A , and U [i~~ e ]
p— 1

is the set of all scanned elements of A. The reachability algorithm uses

as auxiliary data structures a QUEUE, containing the elements of B0 
ordered

according to nondecreasing value of BEG, and a STACK, for storing the

sequence of scanned intervals , as already noted. The intuitive significance

of the program variables lower, upper , L , and u is as follows (see Figure 4b):

lower and upper denote respectively the current boundaries of the extended

interval being constructed ; £ and u are pointers used in scanning , running

downward and upward respectively.

Algorithm 4 (Finding the set of vertices in A reachable by

alternating paths from the set of unmatched vertices in B in a convex

bipartite graph)

Input: BEG[l:nl, ENDE1:n], N~TCR[l:m]

QUEUE containing the unmatched vertices b E B in increasing order

BEGE 1] � ... � BEGE n]
k

Output: The set U [i ,e ] C A of vertices reachable from unmatched
p—l 

p p

vertices b € B, represented by a sequence -l,i1,e1, i2, e2,. - . , ik, ek

stored on STACK
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1 begin
2 STACK ~ -l
3 while QUEUE 

~~ 
do (* find vertices reachable from first(QUEIJE)*)

4 begin 3 ~ QUEUE
5 ~~ END[j] > top(STACK) then (* new vertices to be scanned *)
6 begin 2 :  = END[j]+l, lower: = BEG[j], u: — upper: ENDIJ]
7 repeat (* extend interval of vertices reached from 3 *)
8 while £ > lower do (* scan downward *)
9 begin 2: = 2-1
10 if M~ITCH[L] # A then (* 2 is matched *)
11 begin lower: — mm (lower, BEG[MATCH[L]])
12 upper: = max (upper , E N D [ M A T C} L [ L] ] )
13 end
14 if 2 < tOP(STACK)+1 then (* skip interval *)
15 begin 2 ~ STACK
16 £ ~ STACK17 lower: = min(l ower ,L )
18
19
20 while u < upper do (* scan upward *)
21 begin u : = u+l
22 if MATCH(u] # A then (* u is matched *)
23 begin lower: = min(lower , BEG [MATCH [u] ])
24 upper: = rnax (upper, END[M~TCH[u]~~)
25 end
26 end
27 until (2—lower) and (u—upper) (* extended interval completed *)
28 STACK ~ lower
29 STACK ~ upper
30
31 end
32 end

To analyze the performance of Algorithm 4 , we note that each element

of A is scanned at most once (either by loop 8 or by loop 20); the extremes

of extended intervals are pushed into (lines 28 and 29) and popped from

STACK (lines 15 and 16) at most once, thereby allowing the conclusion that

the algorithm runs in time O(m-f-n).
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5. Generalizations and related problems

In this section we shall briefly describe two interesting generalizati~r’s

of the notion of a convex bipartite graph to which Glover ’ rule , and hence

the efficient algorithms previously described, are app licable , and an

extension of the techniques to a weighted matching problem , which models

a s ignif icant  scheduling app lication .

5.1.. Simp le chessboards: a generalization of doubly convex bipart i te  graphs

Algori thm 3 can be applied to a class of convex bipartite graphs more

general than that of doubly convex graphs. In order to describe this class

we shall need some definitions . By a chessboard we shall  mean any finite

collection of unit squares with integer coordinates on a plane. Any such

unit square will be denoted by coordinates <x,y> of its left lower corner.

A chessboard is simple if for any of its squares <x,y1�~ 
<X ,y

2
> , where

y1 
� y2, it contains all squares <x,y~ , y1 � y � y2 (see Figure 5 ). Rows

and columns of a chessboard are defined in the natural way as maximal

horizontal and vertical sequences of adjacent squares , respectively. We may

allow a simple chessboard to be cut vertically in some places to make

some squ.~res ‘~onadjacent (such as <6,8> and <7 ,8> in Figure 5), provided the

line along which we cut touches the boundary of the chessboard . Let A and B

be the set of columns and rows of a simple chessboard , respectively , and

let us consider the bipartite graph G (A,B,E ) ,  where (a,b) E E iff column

a and row b intersect (i.e., have a square in common). This graph is

convex on A (but not necessarily doubly convex), the required ordering of

A being given by the natural left-to-right ordering of columns. It is

easily seen that any matching in C corresponds to a set of nonattacking

F



22

rooks on this chessboard (see F igure 5 ) .  If the j
~ ’ row of a simple chessboard

consists of squares <x ,Y[ j ] > , BEG[j] ~S x �  END[j], then the maximum

cardinality set of nonattaching rooks on this chessboard is found by

Algorithm 3 in time linear in the number of rows and columns. The reason

why Al gorithm 3 works correctly is that similarly to the doubly convex

case, the sequence of ends of rows “seen” from any column of a s imple

chessboard is bitonic , whence the sequence of the values of EN1) for

vertices i E B (rows of the chessboard) stored on the DEQUE is also

bitonic , and we may find a vertex with the minimal value of END either at

the top or at the bottom of the DEQUE. We leave details to the reader.

0
0

0 0

Figure 5. A simple chessboard with a maximum set of nonattacking
rooks f ound by Algorithm 3. 
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5.2. Bipartite graphs convex on a tree-ordered set

Glover ’s rule works correctly in a more general situation, where the

se ts A ( b ) ,  b E B are (sets of vertices of) paths in a d irected tree (for

concreteness we shall assume that the tree is directed toward the root ;

families of sets of this type are of some importance in file organization ,

see [91). The convex case is easily seen to correspond to a tree

degenerating into a single path. Assume that a directed tree with vertex

set A is represented by an array S[1:m] which gives the successor S[aJ of

any vertex a E A (S[a] = A if a is the root). Similarly as in the convex

case , let A (b) be represented by the pair <BEG [b],END[b]>, meaning that A(b)

is the set of vertices of the path in the tree , beginning at BEG[b] and

ending at END [b] . From the array S we can easily produce , in 0(m) time,

a topological ordering of A , i.e., a linear ordering of the elements of A ,

in which the distance to the root, or the rank of a vertex, is nonincreasing.

We may also assume that the predecessors of any vertex appear consecutively

in this ordering, and that if a
1 appears earlier than a2 then all predecessors

of a
1 appear earlier than all predecessors of a2. This is always the case if

the ordering is found by a breadth-first search of the tree. The algorithm

for finding a maximum matching in our bipartite graph processes the

vertices of A according to the just described ordering and runs as follows.

Instead of a single priority queue, we maintain a collection of priority

queues; at any instant in the execution of the algorithm there are as many

distinc t queues as there are vertices of A with the same value of rank

curren tly being processed. Each time we encounter a vertex i E A which is

a leaf of the tree we initialize a new priority queue and insert into i t  all
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vertices 3 E B with BEG[J] — i; each time we have processed all predecessors

of a vertex a , we merge the queues correspond ing to them into one queue

corresponding to a. All  other details are the same as in Algorithm 1. The

reason why our procedure works correctly is as follows . The priority queue

Q corresponding to a vertex a contains all so far  unmatched vertices b E B

such that a E A(b). The paths starting at a and ending at vertices END[b],

b in Q, are nested one in another, exactly as in the convex case , whence the

same agrument based on Lemma 1 can be applied to prove that matching a to

the vertex b in Q with the minimal value of END guarantees that the matching

obtained will be of maximal cardinality.

If we app ly the mergeable heap structure descr ibed by van Emde Boas [3 J ,
which allows the pr iority queues to be eff iciently merged , then we can

achieve O (m+A(n)nloglogn) time complexity, where A(n) is the functional

Inverse , very slowly growing, of a function of Ackerman type (see Tarjan

[11]).

Our algorithm can be used to find a maximum set of nonattacking rooks

on a chessboard satisfying the following condition: any two squares

<x ,y2> can be joined by a sequence <x ,y 1> = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

of adjacent (i.e., having an edge in common) squares with � x,

1 � i � k. In words, the chessboard does not branch as we go from lef t to

right (see Figure 6). The tree-like ordering of the set A of columns of

such a chessboard is defined so that a column containing square ~x+1,y>

is the successor of column con taining square .x ,y>.

____________ ___________________ _____________ I
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~~~~~~~~~~~~~~~~~ ~E

F igure 6. A chessboard and a maximum set of nonattacking rooks found by
a modification of Algorithm 1.

5.3. Gale-optimal matchings and one-processor scheduling of independent tasks

It is clear that Algorithm 4 can be modified so that it finds an

alternating path in a convex bipartite graph - if there is one - in linear
time. Using such a modified algorithm as a subroutine in the standard

method of finding a maximum matching, based on repea tedly augmenting a

matching along an alternating path (see, e.g. [8 ]), we can obtain an algorithm
of complexity O(n(m+n)). Of course , it is less efficient than the

O(m+rtloglogn) Algorithm 1. However, there is a situation when the standard

alternating path algorithm is of interest. 

— -—- 7 -- -—-—- - - 
— - —---—.— - - —-——- ---—~~ —---— 

. -.
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Suppose that there is a weight w(b) � 0 associated with every b € B ,

and that we are looking for a matching which maximizes the sum of weight of

matched vertices in B. Since assignable subsets of B - i.e., subsets that

can be covered by a matching - form a matroid , it follows that the matching

we are looking for can be f ound by a matro id greedy algorithm (see Lawler [8]

for the explanation of all notions related to ma troids). More exactly ,

our matching can be obtained as follows: (i) order the vertices in B

according to nonincreasing we ight , (ii) starting with the empty matching,

scan B in this order ; for any b € B , augment the current matching along an

alternating path starting at b and ending at an unmatched vertex in A , if

such a path exists , or leave b unmatched otherwise. Notice that after the

augmentation process in step (i i ) ,  vertices which were matched remain matched

(probably to different vertices), and vertices which were left unmatched

before , remain unmatched . It can be proved (Gale [ 5 ] ,  see also [ 8 ] ) ,  that

the matching M so obtained is Gale-optima l, i.e. optimal in the following

strong sense : Let Cb l, . . ., b k) C B , w(b 1) � •. .  � w(bk) be the set of

vertices covered by M. Then for any other matching M’ , the set 
~~~~~~~~~~ 

C B,

w(c1) � ... � w(c2) of vertices covered by M ’ satisfies the condition

£ � k, w(b 1) � w(cl),...,w(b
L
) � w(c

2
). (Notice that both the greedy

algorithm and the notion of Gale-optimality depend only on the ordering of

B according to the weights, and not on the actual values of the weights.)

It is obvious that a Gale-optimal matching of a convex bipartite graph

can be obtained in O(n(m-f-n)) time by the greedy algor ithm, using a modification

of A lgorithm 4, as explained at the beginning of this subsection.

I

IU
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There is an interesting relationship between Gale-optimal matchings

in convex bipar tite graphs and the problem of scheduling a set B of n

independent (no precedence cons tra ins) tasks on one processor , where each

task takes one unit of processing time, there is a starting time BEG[J]

and deadline END[JJ for every task j, and a penalty p(j) which must be

paid if this task is not executed in the time interval [BEG[j],END[j]]

(we assume that time is integer-valued). It is easy to see that any

schedule minimizing the total penalty corresponds to a Gale-optimal matching

in a convex bipartite graph defined by arrays BEC ,END , and with w(j) — M-p(j)

(M > max
1 < < ~p(j)): the vertex i matched to task j E B determines the

unit interval of time when 3 is to be executed (see Lawler [8], Chapter 7).

We conclude that an optimal schedule for this problem can be obtained in

0(n(m-fn)) time (m is the maximal deadline). Of course, if all penalties

are equal, i.e., when we simply maximize the number of tasks executed ,

then the optimal schedule can be obtained in O(m+nloglogn) time by Algorithm 1.

A s a closing remark , we note that the maximum matching problem on a general

b ipar tite graph G correspond s to the situa tion where for any b E B the set

A(b) is a collection of t(b) intervals of A. It is an almost straightforward

extension of our discussions in Sections 2 and 4, to show that the standard

approach based on augmenting paths [8 J can be implemented - both for the

maximum matching and for the Gale-optimal matching - in time O(n(m+t loglogn))

where t — ~ t(b) is the total number of intervals in the given G.

I
I

I
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Appendix

Algorithm A (Partitioning a sequence of n integers into two non-

increas ing subsequences)

Input S[l:L] - the original sequence

Output: SUB1[l:Ll], SUB2[1:22] - two nonincreasing subsequences

into which S[1:L] is partitioned S[1] — SUB1[l]

1 begin A l :  — £2: = 0, SUB1[0]: SUB2[O]:

2 for i: = 1 to £ do

3 if S[iJ < SUB1[Ll] ~~~ (* add S[i] to first subsequence *)

4 begin Al:  — .€l + 1

5 SUB 1(Ll]:  = S[ i]

6 end

7 else if S[i] < SUB2 [22] then (* add S[i] to second subsequence *)

8 begin £2: = 22+1

9 SUB2 [22] : — S(i]

10 end

11 else ~~~~ (* no partitioning possible *)

12 end

To prove the correctness of the algorithm, first notice that we always

have S1JB1[L].] < SUB2[22], the inequality being strict except for 21=22=0.

If now, for some i, we reach the condition SUB1[21) < SUB2[22] < S[i]

(line 11) it is clear that the original S[l:L] contains an increasing sub-

sequence of length 3, which makes impossible its partitioning into two

nonincreasing subsequences.

One may note that the algorithm easily generalizes to an algorithm for

partitioning an arbitrary sequence of length A into the minimal possible

1
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number of nonincreas ing subsequences, in time 0(Alogd ) ,  where d is this

minimial number of subsequences, or - equivalently - the maximal length

of an increasing subsequence in the given sequence.

1~
I

Ii

1~

F
r
I 
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